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Abstract. We consider an interacting homogeneous Bose gas at zero temperature in two spatial dimensions.
The properties of the system can be calculated as an expansion in powers of g, where g is the coupling
constant. We calculate the ground state pressure and the ground state energy density to second order in the
quantum loop expansion. The renormalization group is used to sum up leading and subleading logarithms
from all orders in perturbation theory. In the dilute limit, the renormalization group improved pressure
and energy density are expansions in powers of the T 2B and T 2B ln(T 2B), respectively, where T 2B is the
two-body T -matrix.

PACS. 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena –
05.45.Ac Low-dimensional chaos

1 Introduction

The remarkable achievement of Bose-Einstein condensa-
tion (BEC) of alkali atoms in harmonic traps [1–3] has
created an enormous interest in the properties of dilute
Bose gases (for a review, see e.g. Ref. [4] and references
therein).

The homogeneous Bose gas in three dimensions has
been studied in great detail over the past 50 years (for
a review, see e.g. [5]). At zero temperature, the quantum
loop expansion is essentially an expansion in powers of√
ρa3, where a is the two-body s-wave scattering length

and ρ is the density. Lee and Yang [6] were the first to cal-
culate the leading quantum correction to the energy den-
sity. Part of the second quantum correction to the energy
density was obtained by Wu, by Hugenholz and Pines, and
by Sawada [7]. Only recently has a complete two-loop re-
sult been obtained by Braaten and Nieto [8]. The result
depends, in addition to the scattering length, also on the
scattering amplitude for 3 → 3 scattering.

The homogeneous Bose gas in two dimensions has
also been studied extensively. The chemical potential and
ground state energy density of a two-dimensional homo-
geneous Bose gas were first calculated by Schick [10]. By
summing up ladder diagrams, he showed that in the di-
lute limit, the leading order results for the energy den-
sity and chemical potential are proportional to the two-
body T -matrix, T 2B ∼ [ln(ρa2)]−1, where ρ is the density
and a is the range of the interaction. Corrections to these
results have been considered by several authors [11–16].
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A formal proof of the result by Schick was given by Lieb
and Yngvason [17,18]. Very recently, the two-dimensional
Bose gas has been studied by Bernardet et al. [19] using
lattice simulations.

A Bose-Einstein condensate in a two-dimensional ho-
mogeneous Bose gas only exists at T = 0. At finite
temperature, phase fluctuations destroy the condensate.
This is reflected in the Mermin-Wagner theorem [20,21],
which states that there is no spontaneous breakdown of
a continuous symmetry in a homogeneous system in two
dimensions at finite temperature. The physics of two-
dimensional homogeneous Bose gases is nonetheless very
interesting. A dilute homogeneous Bose gas in two di-
mensions is expected to undergo a phase transition at
finite temperature, which is the Kosterlitz-Thouless tran-
sition [22]. Below the critical temperature, the gas is su-
perfluid but has only algebraic long-range order. This
topological phase transition is not characterized by a lo-
cal order parameter, but by the unbinding of vortex pairs
and the destruction of superfluidity. The superfluid phase
is characterized by the existence of a quasicondensate [12]
which roughly speaking corresponds to a condensate with
a fluctuating phase. The existence of a quasicondensate
has been observed in spin-polarized hydrogen adsorbed
on a superfluid 4He surface by Safonov et al. [23].

In the present paper, we reconsider the homogeneous
Bose gas in two dimensions at zero temperature. We calcu-
late the pressure and energy density of the ground state to
second order in the quantum loop expansion. We also ap-
ply the renormalization group to sum up leading and sub-
leading logarithms from all orders of perturbation theory.
In the dilute limit, the renormalization group improved
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pressure and energy density are essentially expansions in
powers of T 2B and T 2B ln(T 2B), respectively.

The paper is organized as follows. In Section 2, we
discuss the perturbative framework developed in refer-
ence [8] to calculate the ground state properties of a ho-
mogeneous Bose gas. In Section 3, we calculate the ground
state pressure to two-loop order. In Section 4, we calcu-
late the ground state energy density through two loops.
In Section 5, we apply the renormalization group to sum
up leading and subleading logarithms from all orders in
perturbation theory. Finally, we summarize in Section 6.
Calculational details are included in an appendix.

2 Perturbative framework

In this section, we discuss the perturbative framework set
up in reference [8] to calculate the effects on the ground
state from quantum fluctuations around the mean field.

The action is

S =
∫

dt

{ ∫
d2x ψ∗(x, t)

[
i~
∂

∂t
+

~
2

2m
∇2 + µ

]
ψ(x, t)

−1
2

∫
d2x

∫
d2x′

[
ψ∗(x, t)ψ∗(x′, t)V0(x − x′)

×ψ(x, t)ψ(x′, t)

]}
· (1)

ψ∗(x, t) is a complex field operator that creates a boson at
the position x, µ is the chemical potential, and V0(x) is the
two-body potential. In the following, we set ~ = 2m = 1.
Factors of ~ and 2m can be reinserted using dimensional
analysis.

The action equation (1) is symmetric under a phase
transformation

ψ(x, t) → eiαψ(x, t). (2)

The U(1)-symmetry ensures that the density ρ and
current density j satisfy the continuity equation

ρ̇+ ∇ · j = 0. (3)

In the ground state, the current density j vanishes identi-
cally and the condensate has a constant phase. The U(1)-
symmetry can then be used to make the condensate real
everywhere.

If the interatomic potential V0(x) is short range, it
can be mimicked by local interactions. If the energies are
low enough, the scattering amplitude can be approximated
by s-wave scattering and the action equation (4) can be
approximated by [9]

S =
∫

dt
∫

d2x ψ∗
[
i
∂

∂t
+ ∇2 + µ

]
ψ− 1

2
g
(
ψ∗ψ

)2

. (4)

Here, g is a coupling constant that must be tuned to re-
produce some low-energy observable of the true poten-
tial V0(x).

The quantum field theory defined by the action equa-
tion (4) has ultraviolet divergences that must be removed
by renormalization of µ and g. There is also an ultravi-
olet divergence in the expression for the density ρ. This
divergence can be removed by adding a counterterm δρ.
Alternatively, one can eliminate the divergences associ-
ated with µ and ρ by a normal-ordering prescription of
the fields in equation (4). The coupling constant is renor-
malized in the usual way by replacing the bare coupling
with the physical one.

If we use a simple momentum cutoff M to cut off the
ultraviolet divergences in the loop integrals, there will be
terms proportional to Mp, where p is a positive integer.
There are also terms that are proportional to ln(M). The
coefficients of the power divergences depend on the reg-
ularization method and are therefore artifacts of the reg-
ulator. On the other hand, the coefficients of ln(M) are
independent of the regulator and they therefore represent
real physics. In this paper, we use dimensional regulariza-
tion to regulate both infrared and ultraviolet divergences.
In dimensional regularization, one calculates the loop in-
tegrals in d = 2 − 2ε dimensions for values of ε where the
integrals converge. One then analytically continues back to
d = 2 dimensions. With dimensional regularization, an ar-
bitrary renormalization scale M is introduced. This scale
can be identified with the simple momentum cutoff men-
tioned above. An advantage of dimensional regularization
is that it automatically sets power divergences to zero,
while logarithmic divergences show up as poles in ε. In
two dimensions, the one-loop counterterms for the chemi-
cal potential µ and the density ρ are quadratic ultraviolet
divergences, while the one-loop counterterm for the cou-
pling constant g is a logarithmic ultraviolet divergence.
At the two-loop level, the counterterms for the chemical
potential and the density are also quadratic divergences.
The counterterm for the coupling constant is a double log-
arithmic divergence.

We next parameterize the quantum field ψ in terms of
a time-independent condensate v and a quantum fluctu-
ating field ψ̃:

ψ = v + ψ̃. (5)

The fluctuating field can be written in terms of two real
fields:

ψ̃ =
1√
2

(ψ1 + iψ2) . (6)

Substituting equation (6) into equation (4), the action can
be decomposed into three terms

S[ψ] = S[v] + Sfree[ψ1, ψ2] + Sint[v, ψ1, ψ2]. (7)

S[v] is the classical action

S[v] =
∫

dt
∫

d2x

[
µv2 − 1

2
gv4

]
, (8)
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while the free part of the action is

Sfree[ψ1, ψ2] =
∫

dt
∫

d2x

[
1
2

(
ψ̇1ψ2 − ψ1ψ̇2

)

+
1
2
ψ1

(∇2 +X
)
ψ1 +

1
2
ψ2

(∇2 + Y
)
ψ2

]
. (9)

The interaction part of the action is

Sint[v, ψ1, ψ2] =
∫

dt
∫

d2x
[√

2Tψ1

+
1√
2
Zψ1

(
ψ2

1 + ψ2
2

) − 1
8
g

(
ψ2

1 + ψ2
2

)2
]
· (10)

The sources in equation (10) are

T =
[
µ− gv2

]
v, (11)

X =
[
µ− 3gv2

]
, (12)

Y =
[
µ− gv2

]
, (13)

Z = −gv. (14)

The propagator that corresponds to the free action
Sfree[ψ1, ψ2] in equation (9) is

D(ω, p) =
i

ω2 − ε2(p) + iε

(
p2 − Y −iω

iω p2 −X

)
. (15)

Here p is the wavevector, ω is the frequency, and ε(p) is
the dispersion relation:

ε(p) =
√

(p2 −X)(p2 − Y ). (16)

The value of the condensate v0 that minimizes the classical
action is given by the equation T = 0. Both the propaga-
tor equation (15) and the dispersion relation equation (16)
greatly simplify at v0, since Y = 0 here. The dispersion
relation then becomes gapless, which reflects the sponta-
neous breakdown of the U(1)-symmetry (Goldstone’s the-
orem). The dispersion relation is linear for small wavevec-
tors and is quadratic for large wavevectors, which is that
of a free nonrelativistic particle. The propagator is defined
with an iε prescription in the usual way.

The partition function Z can be expressed as a path
integral

Z =
∫

Dψ1Dψ2 eiS[ψ1,ψ2]. (17)

All the thermodynamic observables can be derived
from Z. For instance, the free energy density F is given by

F(µ) = i
lnZ
V T

, (18)

where V T is the spacetime volume of the system.
The density ρ is given by the expectation value 〈ψ†ψ〉

in the ground state. It can therefore be expressed as

ρ(µ) = −∂F(µ)
∂µ

· (19)

The energy density E is given by the Legendre transform
of the the free energy density

E(ρ) = F(µ) + ρµ. (20)

At this point it is convenient to introduce the thermo-
dynamic potential Ω(µ, v). The thermodynamic potential
is given by all one-particle irreducible vacuum graphs and
can be expanded in the number of loops

Ω(µ, v) = Ω0(µ, v) +Ω1(µ, v) +Ω2(µ, v) + ..., (21)

where the subscript n indicates the contribution from the
nth order in the loop expansion. The free energy F is
given by all connected vacuum graphs and is independent
of the condensate v. If we evaluate Ω at a value of the
condensate that satisfies the condition

v̄ = 〈ψ〉, (22)

it can be shown that all the one-particle reducible graphs
(those that can be disconnected by cutting a single line)
vanish. We then have

F(µ) = Ω0(µ, v̄) +Ω1(µ, v̄) +Ω2(µ, v̄) + .... (23)

The condition equation (22) is equivalent to

∂Ω

∂v
= 0. (24)

The loop expansion equation (23) does not coincide with
the expansion in powers quantum corrections. To obtain
the expansion in powers of quantum corrections, we must
expand the condensate v̄ about the classical minimum v0:

v̄ = v0 + v1 + v2 + .... (25)

By substituting equation (21) into equation (24), we ob-
tain the first quantum correction v1 to the classical mini-
mum:

v1 = −∂Ω1(µ, v)
∂v

∣∣∣∣∣
v=v0

/
∂2Ω0(µ, v)

∂v2

∣∣∣∣∣
v=v0

. (26)

This first quantum correction to the free energy density is

F1(µ) = Ω1(µ, v0), (27)

and the second quantum correction to the free energy den-
sity is

F2(µ) = Ω2(µ, v0) + v1
∂Ω1(µ, v)

∂v

∣∣∣∣∣
v=v0

+
1
2
v2
1

∂2Ω0(µ, v)
∂v2

∣∣∣∣∣
v=v0

. (28)

3 Pressure to two loops

In this section, we calculate the pressure as a function of
the chemical potential µ and the renormalized coupling g
to two loops.
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3.1 Mean-field free energy

The thermodynamic potential in the mean-field approxi-
mation is

Ω0(µ, v) = −µv2 +
1
2
gv4. (29)

The mean-field free energy is given by the classical thermo-
dynamic potential evaluated at the classical minimum v0:

F0(µ) = −µ
2

2g
· (30)

3.2 One-loop free energy

The one-loop contribution to the free energy is

F1(µ) = F1a(µ) +∆1F , (31)

where

F1a(µ) =
i
2

∫
dω
2π

∫
ddp

(2π)d
ln detD−1, (32)

and ∆1F is the one-loop counterterm

∆1F = −µ
g
∆1µ+

µ2

2g2
∆1g. (33)

The propagator D(ω, p) is evaluated at the classical min-
imum, where Y = 0. By integrating over ω, equation (32)
becomes

F1a(µ) =
1
2

∫
ddp

(2π)d
ε(p)

=
1
2
I0,−1(2µ), (34)

where Im,n is defined in Appendix A. Using equation (A.9)
in Appendix A, we obtain

F1a(µ) = − µ2

16π

[
1
ε
− L− 1

2
+ O(ε)

]
, (35)

where L = ln
(
µ/2M2

)
. The counterterms at one-loop

are [24]:

∆1µ = 0, (36)

∆1g =
g2

8πε
· (37)

Adding equations (33, 35), we obtain the one-loop contri-
bution to the free energy

F1(µ) =
µ2

16π

[
L+

1
2

]
· (38)

Note that F1(µ) is independent of the coupling constant g.
Adding equations (30, 39), we obtain the one-loop approx-
imation to the free energy:

F0+1(µ) = −µ
2

g
+

µ2

16π

[
L+

1
2

]
, (39)

where the coupling constant is evaluated at the scale M ,
g = g(M).

� � �
����
� � �
����

Fig. 1. Two-loop vacuum graphs contributing to the free
energy F .

3.3 Two-loop free energy

The two-loop contribution to the thermodynamic poten-
tial is given by the one-particle irreducible graphs shown
in Figure 1. The solid line denotes the diagonal propagator
for ψ1 and the dashed line denotes the diagonal propaga-
tor for ψ2. The off-diagonal propagators for ψ1 and ψ2 are
denoted by a solid-dashed and dashed-solid line, respec-
tively. The expression for the diagrams is

Ω2(µ, v) =
gµ

8
J +

g

32
[
3I2

1,1 + 2I−1,−1I1,1 + 3I2
−1,−1

]
,

(40)

where

J = 6J0,0,1 − J−1,−1,1 − 3J1,1,1 − 2J−1,0,0, (41)

and integrals Jl,m,n are defined in Appendix A. The first
correction v1 is given by equation (26):

v1 = −gv0
8µ

[3I1,1 + I−1,−1] . (42)

The two-loop contribution to the free energy is then

F2(µ) =
gµ

8
J +

g

16
[
I2
−1,−1 − 2I−1,−1I1,1−3I2

1,1

]
+∆2F .

(43)

The counterterm ∆2F is

∆2F =
1
2
I1,1∆1µ− µ

g
∆2µ+

µ2

2g2
∆2g

− 1
2g

(∆1µ)2 +
µ

g2
∆1µ∆1g − µ2

2g3
∆1g

2. (44)

At the two-loop level, the counterterms are given by

∆2µ = 0, (45)

∆2g =
g3

64π2ε2
· (46)

The integrals Jl,m,n are ultraviolet divergent. After sub-
tracting the divergent part, the remainder must be cal-
culated numerically. We evaluate the expression in Ap-
pendix A. The result is

J = −2I0,1 [I1,1 + I−1,−1] + Jnum, (47)
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where Jnum = −3.52 × 10−5µ. The final result for the
two-loop contribution to the free energy is

F2(µ) = − gµ2

64π2
[1 + C] . (48)

Here C = 2.78×10−3. Adding equations (30, 39), and (48),
we obtain our final result for the free energy to second
order in the quantum loop expansion

F0+1+2(µ) = −µ
2

2g
+

µ2

16π

[
L+

1
2

]
− gµ2

64π2
[1 + C] ,

(49)

3.4 Two-loop pressure

The pressure P is given by −F . The pressure through
two loops is given by minus the sum of equations (30, 39)
and (48):

P0+1+2(µ) =
µ2

2g
− µ2

16π

[
L+

1
2

]
+

gµ2

64π2
[1 + C] . (50)

The coupling constant g in equation (4) satisfies

M
d

dM
g = β(g), (51)

where the β-function is a polynomial in g. Normally, the
β-functions are known only up to a certain order in the
quantum loop expansion. In the present case, the one-loop
result for the β-function is exact and β(g) = g2/4π [24].
From equation (51), one can easily check that our result
equation (50) for the two-loop pressure is independent of
the scale M up to correction of order g2.

4 Energy density to two loops

In this section, we derive the energy density E as a function
of the density ρ and the renormalized coupling g to two
loops.

4.1 Mean-field energy density

Using equations (19, 30) the density in the mean-field ap-
proximation is

ρ0(µ) =
µ

g
· (52)

The chemical potential is obtained by inverting
equation (52):

µ0(ρ) = gρ· (53)

Using equations (20, 52), the energy density in the mean-
field approximation is given by

E0(ρ) =
1
2
gρ2. (54)

4.2 One-loop energy density

Using equations (19, 39) we obtain the density in the one-
loop approximation

ρ0+1(µ) =
µ

g
− µ

8π

[
L+ 1

]
. (55)

Inverting equation (55) to obtain µ as a function of ρ, one
finds

µ0+1(ρ) = gρ+
g2ρ

8π

[
L̄+ 1

]
, (56)

where L̄ = ln
(
gρ/2M2

)
and g = g(M). Using equa-

tions (20, 39) and (56), the energy density in the one-loop
approximation becomes

E0+1(ρ) =
1
2
gρ2 +

g2ρ2

16π

[
L̄+

1
2

]
. (57)

This agrees with the result obtained by Lozano [25], and
by Haugset and Ravndal [26].

4.3 Two-loop energy density

Using equations (19, 49), we obtain the density in the
two-loop approximation:

ρ0+1+2(µ) =
µ

g
− µ

8π

[
L+ 1

]
+

gµ

32π2
[1 + C] . (58)

Inverting equation (58), we obtain the two-loop expression
for the chemical potential:

µ0+1+2(ρ) = gρ+
g2ρ

8π

[
L̄+ 1

]

+
g3ρ

64π2

[
L̄2 + 3L̄− 2C

]
. (59)

The final result for the two-loop energy density then be-
comes

E0+1+2(ρ) =
1
2
gρ2 +

g2

16π
ρ2

[
L̄+

1
2

]

+
g3

128π2
ρ2

[
L̄2 + 2L̄− 1 − 2C

]
. (60)

Using the renormalization group equation (51) for the run-
ning coupling constant, we see that the two-loop results
for the density, chemical potential, and energy density are
independent of the renormalization scale M up to correc-
tions of order g4.

5 Renormalization group

The two-loop results for the pressure and density include
a logarithm L. The renormalization group can be used to
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absorb this logarithm. The solution to the renormalization
group equation (51) is

g(M0) =
g(M)

1 − g(M)
8π ln

(
M2

0
M2

) · (61)

By substituting the running coupling constant into the
expressions for the pressure and density in the mean-field
approximation and choosing the renormalization scale
M0 =

√
µ/2, we absorb this logarithm. In a similar man-

ner, we can sum logs of the form gn+1Ln (n = 1, 2, 3...)
by using the running coupling in the remaining terms in
expressions for the pressure and density. These terms are
generated by expanding out equation (61) in powers of
L. The result is

ρ(µ) =
µ

g0
− µ

8π
+

g0µ

32π2
[1 + C] , (62)

P(µ) =
µ2

2g0
− µ2

32π
+

g0µ

64π2
[1 + C] , (63)

where g0 ≡ g(M0). In the same way, we can sum leading
(of the form gn+1L̄n, where n = 1, 2, 3...) and subleading
logs (of the form gn+mL̄n, where n = 1, 2, 3..., and
m = 2, 3...,) from all orders of perturbation theory
in the chemical potential and energy density by using
a running coupling constant g(M0) and choosing the
renormalization scale M0 =

√
ρ/2. These terms are

generated by expanding out equation (61). The result is

µ(ρ) = g0ρ+
g2
0ρ

8π
[ln(g0) + 1]

+
g3
0ρ

64π2

[
ln2(g0) + 3 ln(g0) − 2C

]
, (64)

E(ρ) =
1
2
g0ρ+

g2
0ρ

16π

[
ln(g0) +

1
2

]

+
g3
0ρ

128π2

[
ln2(g0) + 2 ln(g0) − 1 − 2C

]
, (65)

where g0 ≡ g(M0).

We have approximated the two-body interaction po-
tential by local interactions. In real systems, however,
the interactions have a finite range a and so 1/a pro-
vides a natural ultraviolet cutoff M . In the dilute gas
limit, we have | ln(µa2/2)| � 1 and | ln(ρa2)/2| � 1 [10–
15], and the running coupling constant is approximately
equal to either −8π[ln(µa2/2)]−1 or −8π[ln(ρa2/2)]−1,
which essentially is the two-body T -matrix. By substitut-
ing these expressions for the coupling constant into to the
expressions for the pressure, density, chemical potential,

and energy density, we obtain the renormalization group
improved results

P(µ) = −µ
2L

16π

[
1 +

1
2
L−1 + 2(1 + C)L−2

]
, (66)

ρ(µ) = −µL
8π

[
1 + L−1 + 2(1 + C)L−2

]
, (67)

µ(ρ) = −8πρ
L̄

[
1 +

(
ln[−L̄/8π]L̄− 1

)
L̄−1

+ ln2
(
ln[−L̄/8π]

)
L̄−2 − 3

(
ln[−L̄/8π]

)
L̄−2

−2CL̄−2

]
, (68)

E(ρ) = −4πρ2

L̄

[
1 +

(
ln[−L̄/8π] − 1

2

)
L̄−1

+ ln2
(
ln[−L̄/8π]

)
L̄−2 − 2

(
ln[−L̄/8π]

)
L̄−2

−(1 + 2C)L̄−2

]
, (69)

where L =
[
ln(µa2/2)

]
and L̄ =

[
ln(ρa2/2)

]
. The full

two-loop renormalization group improved results equa-
tions (66–69) are the main result of the present pa-
per. The leading order results were first obtained by
Schick [10], while leading corrections were considered in
references [11–16].

We note that the pressure P and the density ρ are
expansions in powers of the two-body T -matrix, while the
chemical potential µ and energy density E are expansions
in powers of T 2B ln(T 2B) rather than T 2B. This difference
can be traced back to the fact the quantum loop expansion
for P and ρ are expansions in powers of g, while µ and E
are expansions in powers of g ln(g).

6 Summary

In the present paper, we have studied a two-dimensional
interacting homogeneous Bose gas at zero temperature.
We have calculated the ground state pressure and energy
density to second order in the quantum loop expansion.
The results are independent of the arbitrary renormaliza-
tion scale M .

We have applied the renormalization group to sum
up leading and subleading logarithms from all orders in
perturbation theory. In the dilute limit, the renormaliza-
tion group improved pressure and energy density are ex-
pansions in powers of T 2B and T 2B ln(T 2B), respectively,
where T 2B is the two-body T -matrix. We have obtained
the ground state pressure, density, chemical potential, and
energy density to next-to-next-to-leading order.

This work was supported by the Stichting voor Fundamenteel
Onderzoek der Materie (FOM), which is supported by the Ned-
erlandse Organisatie voor Wetenschapplijk Onderzoek (NWO).
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Appendix A: Formulas

The loop integrals that appear in our calculations involve
integrations over the energy ω and the spatial momen-
tum p. The energy integrals are evaluated using contour
integration.

The specific one-loop integral needed is∫
dω
2π

1
[ω2 − ε2(p) + iε]

= − i
2ε(p)

· (A.1)

The specific two-loop integrals needed are∫
dω1

2π

∫
dω2

2π
1

[ω2
1 − ε2(p) + iε]

× 1
[ω2

2 − ε2(q) + iε][(ω1 + ω2)2 − ε2(r) + iε]
=

1
4ε(p)ε(q)ε(r)[ε(p) + ε(q) + ε(r)]

, (A.2)

∫
dω1

2π

∫
dω2

2π
ω1ω2

[ω2
1 − ε2(p) + iε]

× 1
[ω2

2 − ε2(q) + iε][(ω1 + ω2)2 − ε2(r) + iε]
=

1
4ε(r)[ε(p) + ε(q) + ε(r)]

· (A.3)

Here r = |p + q|.
Some of the one-loop momentum integrals are infrared

divergent or ultraviolet divergent or both. They can be
written in terms of the integral Im,n, which is defined by

Im,n =
(

eγM2

4π

)ε ∫
ddp

(2π)d
p2m

pn(p2 + Λ2)n/2
· (A.4)

Here, M is a renormalization scale that ensures that Im,n
has the canonical dimension also for d 6= 2. γ ≈ 0.5772
is the Euler-Mascheroni constant. With dimensional reg-
ularization, Im,n is given by the formula

Im,n =
Ωd

(2π)d

(
eγM2

4π

)ε
Λd+2m−2n

×Γ
(
d−n

2 +m
)
Γ

(
n−m− d

2

)
2Γ

(
n
2

) , (A.5)

where Ωd = 2πd/2/Γ [d/2] is the area of the d-dimensional
sphere.

The integrals Im,n satisfy the relations

d
dΛ2

Im,n = −n
2
Im+1,n+2, (A.6)

(d+ 2m− n) Im,n = nIm+2,n+2, (A.7)

Λ2Im,n = Im−1,n−2 − Im+1,n. (A.8)

The first relation follows directly from the definition of
Im,n. The second relation follows from integration by
parts, while the last is simply an algebraic relation.

In two dimensions, these integrals have logarithmic
and power ultraviolet divergences. The power divergences
are set to zero in dimensional regularization, while the
logarithmic divergences appear as poles in ε. The specific
integrals are

I0,−1 = − Λ4

32π

{
1
ε
− L− 1

2

+
1
2

[
L2 + L− 5

2
+
π2

2

]
ε+ O (

ε2
)}

, (A.9)

I−1,−1 =
Λ2

8π

{
1
ε
− L+ 1

+
1
2

[
(L− 1)2 + 1 +

π2

2

]
ε+ O (

ε2
)}

, (A.10)

I1,1 = −Λ
2

8π

{
1
ε
− L− 1

+
1
2

[
(L + 1)2 − 4 +

π2

2

]
ε+ O (

ε2
)}

, (A.11)

I0,1 =
1
4π

{
1
ε
− L+

1
2

[
L2 +

π2

2

]
ε+ O (

ε2
)}

,

(A.12)

where L = ln(Λ2/4M2).
The two-loop integrals needed can be expressed in

terms of Jl,m,n

Jl,m,n =
(

eγM2

4π

)2ε ∫ ddp
(2π)d

∫
ddq

(2π)d

×
[
p/

√
p2 + Λ2

]l[
q/

√
q2 + Λ2

]m[
r/
√
r2 + Λ2

]n
p
√
p2 + Λ2 + q

√
q2 + Λ2 + r

√
r2 + Λ2

·
(A.13)

In two dimensions, these integrals have quadratic and dou-
ble logarithmic divergences that cancel in the particular
combination in equation (43), leaving us with a logarith-
mically divergent integral. We write the integral as

J = Jdiv + Jnum, (A.14)

where the ultraviolet divergence of the integral J has been
isolated:

Jdiv = 2
(

eγM2

4π

)2ε ∫
ddp

(2π)d

[
2 − p√

p2 + Λ2

−
√
p2 + Λ2

p

] ∫
ddq

(2π)d
1

q
√
q2 + Λ2

· (A.15)

The first term inside the square brackets in equa-
tion (A.15) has only a power divergence, and so it is set to
zero in dimensional regularization. In terms of Im,n, the
remaining terms can be written as

Jdiv = −2I0,1 [I1,1 + I−1,−1] . (A.16)
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The remaining finite part of the integral J can be evalu-
ated directly in two dimensions and reads

Jnum =
∫

d2p

(2π)2

∫
d2q

(2π)2

{[
6p√
p2 + Λ2

− 2
p

√
p2 + Λ2

− 3pqr√
p2 + Λ2

√
q2 + Λ2

√
r2 + Λ2

−r
√
p2 + Λ2

√
q2 + Λ2

pq
√
r2 + Λ2

]

× 1
p
√
p2 + Λ2 + q

√
q2 + Λ2 + r

√
r2 + Λ2

− 2
q
√
q2 + Λ2

[
2 − p√

p2 + Λ2
−

√
p2 + Λ2

p

]}
·

Since the only scale in the integrand in equation (A.17)
is Λ, it follows from dimensional analysis that Jnum is pro-
portional to Λ2. The numerical value is

Jnum = −1.76× 10−5Λ2. (A.17)
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